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Abstract 

Methods of testing aircraft for departures range from 
simple, single-parameter criteria to complex, in-flight 
departure resistance maneuvers. These methods are 
useful for predicting departure characteristics, but 
single-parameter methods may be limited in accuracy 
because of simplifying assumptions made in their 
derivation. Also, in-flight or simulation testing of 
departure resistance maneuvers can be limited by the 
small number of conditions tested. These limitations 
increase at high angles of attack where the dynamics of 
the aircraft are more complex. This paper presents a 
method for using genetic algorithms to augment 
traditional evaluation criteria. Quasi-random control 
inputs are generated by a genetic algorithm for a high 
fidelity X-31 simulation. Each input is evaluated to 
determine if it causes a departure. The result of the 
genetic-algorithm-based search is a population, or set, of 
control input combinations that lead to uncontrolled 
flight conditions in the simulation. Recognizing possible 
differences and simplifications between simulation 
models and the real aircraft, the results show that the 
method used is effective for finding possible departures 
caused by inertial coupling and aerodynamic 
asymmetries. Simulation data are used to show the 
results of the genetic algorithm search. 

Nomenclature 

cn dynamic directional stability parameter, 
Pdyn llrad 
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Cn ps stability axis directional stability 
parameter, l/rad 

yawing moment coefficient for zero CllO 
sideslip 

IXX moment of inertia about the aircraft X 
axis, slug ft2 

slug ft2 
IU moment of inertia about the aircraft Z axis, 

Lat Stk 

LCDP 

Long Stk 

Mi, inertial coupling-induced pitching 
moment, ftslb 

lateral stick deflection, %max 

lateral control departure parameter, l/rad 

longitudinal stick deflection, %max 

P 

PW 

4 

r 

a angle of attack, deg 

a 

P sideslip angle, deg 

s sideslip rate, deg/sec 

*‘no 

body axis roll rate, deglsec 

velocity vector roll rate, deg/sec 

body axis pitch rate, deglsec 

body axis yaw rate, deglsec 

angle of attack rate, deg/sec 

change in yawing moment coefficient for 
zero sideslip 

Introduction 

Departure resistance testing is one of the most 
difficult tasks to accomplish when testing highly 
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nonlinear systems, such as modem fighter aircraft, and 
presents a challenging problem for system designers. 
Departure susceptibility has increased as fighters have 
become more agile.' Flight control system designers 
must make a trade between taking advantage of 
available control power to achieve maximum agility and 
ensuring controllability and departure resistance. To 
insure adequate departure resistance, the aircraft is 
flown with a margin of safety away from conditions that 
could invoke departure, reducing the available 
maneuverability of the aircraft. These boundaries are 
calculated using several techniques derived to quantify 
the static and dynamic stability characteristics and the 
departure resistance of the aircraft. 

Some examples of the simple single-parameter 
criteria most often used to determine the departure 
resistance characteristics of a design include C, 2, 

or the dynamic directional stability parameter; LCDP 2, 
or lateral control departure parameter; and C 3, or 
stability axis directional stability parameter. Although 
these parameters have been established as good 
prediction methods4 and offer some insight into the 
characteristics of a given aircraft, they have not 
demonstrated consistent correlation with flight test data 
to be considered totally reliable3, especially for high- 
angle-of-attack, a , flight  condition^.^ These criteria 
involve using simplifying assumptions related to 
linearization of the equations of motion, which could 
lead to inaccurate conclusions. Efforts have been made 
to improve upon these criteria with some success, but 
control system influences were not taken into account.3 

$dyn 

4 s  

To include the flight control system influences, 
nonlinear simulations are often used to test for aircraft 
departure susceptibility. Departure resistance is 
evaluated by simulating highly dynamic maneuvers 
designed to test the limits of the system. This procedure 
usually involves the use of a basic set of maneuvers 
(clinicals)6, such as spins and rapid inputs. However, 
these maneuvers cannot completely test the capabilities 
of the aircraft for every possible flight condition and 
control input combination. An infinite number of 
possible input combinations exists. 

To augment these simulation tests, an optimization or 
search technique is needed to locate possible control 
inputs leading to departed, or uncontrolled, conditions. 
Optimization could involve maximizing some 

parameter set, such as a combination of aircraft states, to 
represent a departed flight condition. This paper 
describes a method for using genetic algorithms to 
augment traditional evaluation techniques. Genetic 
algorithm search techniques represent one example of 
an optimization technique that can search a solution 
space in a quasi-random fashion. Such techniques lend 
themselves well to the application of complex system 
testing. 

Aircraft Description 

Figure 1 shows the X-31 Enhanced Fighter 
Maneuverability demonstrator aircraft. This aircraft was 
designed to test the poststall portion of the flight 
envelope for fighter aircraft. One goal of the project was 
to test the possible tactical and agility benefits available 
from fully integrated thrust vectoring in the slow speed 
arena up to 70" angle of attack. The aerodynamics in 
poststall flight involve very nonlinear effects from 
vortex shedding and other phenomena, making control 
of the aircraft in this flight regime difficult. This 
difficulty is particularly true for precise maneuvers, such 
as tracking or nose pointing. 

The X-31 flight control system was designed using 
modem control theory with full state feedback. The high 
degree of complexity of the flight control system and the 
nonlinear characteristics of poststall flight make testing 

Figure 1. The X-31 aircraft. 
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for departure prone areas of the flight envelope difficult, 
making the X-31 aircraft an ideal candidate for this 
study. 

Genetic Algorithms 

Genetic algorithms are a structured random search 
technique based on evolutionary programming 
principles that mimic modem representations of 
biological evolution. The Darwinian concept of 
“survival of the fittest” and a structured random 
information exchange among a population of artificial 
chromosomes, or binary strings, is used for the search 
procedure. Genetic algorithms differ from numerical 
search methods used for optimization for several 
reasons. First, they work with a coding of the parameter 
set, not the parameters themselves. Second, they search 
from a population of possible solutions instead of a 
single point. Third, they use probabilistic rules of 
transition instead of deterministic rules. For example, 
genetic algorithms do not require that first and second 
derivative data be calculated for the fitness function 
with respect to the independent variables. The majority 
of deterministic methods rely on these data to guide the 
search. 

Genetic algorithms require that the parameter set to 
be optimized be coded into a finite length string. For 
this example, a search for possible control input 
combinations leading to a departed flight condition 
requires that the control inputs be coded into a form the 
genetic algorithm can operate on. One way of doing this 
is to represent the control inputs as binary strings of a 
finite length. Additional details regarding binary 
conversion of control inputs is provided in the 
Experimental Method section. An initial set, or 
population, of a given number of these possible input 
combinations would form an initial set of inputs to 
begin the genetic search. These strings are then 
evaluated using a fitness function, and the resulting 
value is used to determine which strings, or control 
input combinations, are operated on by the genetic 
algorithm. 

A population size of 100 input strings was used for 
this study based on suggestions from reference 7. 
Genetic algorithms work iteration by iteration, 
operating on a population of strings. This operation is 
similar to natural population growth, where each 
generation successively evolves into the next generation 

through reproduction. This approach varies greatly from 
traditional Optimization techniques that search from 
point to point using some deterministic transition rule, 
such as a gradient. For this discussion, this evolutionary 
process will be referred to as the genetic process. For 
simple genetic algorithms, the process is made up of 
three operators called selection, crossover, and 
mutation. 

Selection evaluates each binary string according to a 
fitness value. Binary strings with higher fitness values 
are selected for combination with other superior strings 
to form a new population. Selection makes sure that the 
characteristics of strings with the highest fitness values 
are passed to the next generation. For this study, 
tournament selection is used to select the strings used to 
form the new population. Tournament selection allows 
the best strings to be mated with other superior strings a 
number of times that is proportionate to fitness value 
until a new population of strings is formed that equals 
the total number of strings available in the initial 
population. More detail on different selection methods 
is available in reference 7. This reference also provides 
a good introduction to genetic algorithms. 

Crossover is the process by which superior strings are 
joined together to form a new string and consists of 
three steps. First, the newly selected strings are paired 
together at random. Next, an integer position along 
every pair of strings is selected as the crossover point. 
Finally, based on a probability of crossover, the paired 
strings undergo crossover at the integer position along 
the string. In other words, the first section of one string 
of the pair is combined with the last section of the other 
string from the pair and vise-versa. This combining 
process results in a new pair of strings that shares 
characteristics of the original pair. The crossover 
probability of 60 percent used in this study corresponds 
to 60 percent of the strings being crossed over and 
40percent being left intact. This value is variable and 
depends on the problem being addressed. Crossover 
insures that characteristics of the most fit binary strings 
are passed on to subsequent generations, while still 
allowing new structures to enter into the search space. 
Selection and crossover give genetic algorithms most of 
their search powers8 The use of this process is the 
distinguishing characteristic of genetic algorithms. 

Next, the population of binary strings that is formed 
from the selection and crossover process is operated on 
by mutation. Mutation involves switching individual 
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bits in the string according to a mutation probability 
value. For instance, a mutation probability of 0.1 would 
indicate that 10 out of 100 bits in a binary string would 
be switched. This process introduces random changes 
into the solution space, reducing the possibility that the 
genetic algorithm will find a local minimum or 
maximum instead of the global optimal solution. 
Mutation also allows the search to include binary strings 
that may not be found by the crossover process. 
Mutation is useful to the genetic process, but 
excessively high mutation probabilities cause the 
genetic algorithm to represent a random search of the 
possible solution space. High mutation rates can also 
destroy the genetic information that is usually passed to 
the next generation through the crossover process. 

After the initial population has undergone all three 
steps of the genetic process, a new population of strings 
will exist. The new population is evaluated to find the 
fitness value for each binary string in the population, 
and the steps are repeated. Each iteration of the genetic 

process, including the fitness evaluation, is referred to as 
one generation. The genetic process is stopped after the 
average fitness value of the whole population is close to 
the best fitness value of the best binary string. 

Genetic algorithms were originally developed by 
H ~ l l a n d . ~  They have since been applied to many 
practical problems relevant to aerospace  vehicle^.'^^^ 
Many types of genetic algorithms exist, but only the 
simple form described here was used in this study. Koza 
provides an advanced presentation of genetic algorithms 
and evolutionary programming concepts.15 

Experimental Method 

To test the ability of genetic search techniques to 
determine control inputs that could lead to departure, a 
program was written to convert a time history of control 
inputs into a format that could be manipulated by the 
genetic algorithm code. Table 1 contains all the possible 
control input combinations considered for this study and 

Table 1. Binary representation possible stick input combinations 5-bit string system. 

Inputs* 

Lateral stick, Longitudinal Rudder pedal, 
Bit string % max stick, % max %max Descriptions 

00000 0 0 0 No deflection 

0000 1 0 0 0 No deflection 

00010 0 0 0 No deflection 

0001 1 0.5 0 0 Half lat stk 

00100 0 0.5 0 Half long stk 

00101 0 0 0.5 Half rudder 

00110 -1 0 0 - Lat stk 

00111 1 0 0 Lat stk 

01000 0 -1 0 - Long stk 

01001 0 1 0 Long stk 

01010 0 0 -1 - Rudder 

01011 0 0 1 Rudder 

01100 -1 -1 0 - Lat stk - Long stk 

01101 -1 1 0 - Lat stk + Long stk 

01110 1 -1 0 Lat stk - Long stk 

01111 1 1 0 Lat stk + Long stk 

10000 -1 0 -1 - Lat stk - Rudder 
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Table 1. Continued. 

Inputs* 

Lateral stick, Longitudinal Rudder pedal, 
Bit string 5% max stick, % max %max Descriptions 

lo001 -1 0 1 - Lat stk + Rudder 

10010 1 0 -1 Lat stk - Rudder 

10011 1 0 1 Lat stk + Rudder 

10100 0 -1 -1 - Long stk - Rudder 

10101 0 -1 1 - Long stk + Rudder 

10110 . o  1 -1 Long stk - Rudder 

10111 0 1 1 Long stk + Rudder 

11000 -1 -1 -1 - Lat stk - Long stk - Rudder 

11001 -1 -1 1 - Lat stk - Long stk + Rudder 

11010 -1 1 -1 - Lat stk + Long stk - Rudder 

1101 1 -1 1 1 - Lat stk + Long stk + Rudder 

11100 1 -1 -1 Lat stk - Long stk - Rudder 

11101 1 -1 1 Lat stk - Long stk + Rudder 

11110 1 1 -1 Lat stk + Long stk - Rudder 

11111 - 1 1 1 Lat stk + Long stk + Rudder 

* Scale factor to maximum control input value (i.e. 0.5 = 50 percent stick deflection). 

the corresponding binary string value. These strings 
represent the control input values at a given time point. 
The controls listed in the table include the longitudinal 
and lateral stick position and the rudder pedal position. 
Throttle setting was held at maximum power for all the 
maneuvers, These 5-bit strings are strung together, one 
per second, to represent a control input time history. A 
1-sec frequency of control inputs was chosen as a 
starting point for this study. A 1-sec input frequency is 
high enough to test the controls but still low enough to 
remain a realistic input frequency for a pilot. 

The flight condition used io trim the simulation was 
also coded into a binary format and was included at the 
end of each control input string group as an additional 
5-bit string. The first two bits in the string represented 
trim altitude. The last three represented the trim angle of 
attack. Tables 2 and 3 list the possible trim conditions 
for the start of the simulation. These flight conditions 
were chosen arbitrarily with the 55' angle-of-attack trim 
added to augment aerodynamic asymmetry testing. 

Figure 2(a) shows a typical bit string representation 
for a 5-sec control input and the resulting input signals, 

Table 2. Altitudes for trim conditions. 
Bit string Altitude for trim, ft 

00 10,000 

01 20,000 

10 30,000 

11 40.000 

Table 3. Angles of attack for trim conditions. 
Bit string Angles of attack, deg 

000 10 
00 1 20 
010 30 
011 40 
100 50 
101 55 

110 60 
111 70 
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including the trim condition. It consists of 25 bits 
representing the 5 input strings and 5 additional bits for 
the trim condition. By including the trim condition as 
part of the string, different points in the flight envelope 
are tested for possible departures. The 5-sec input time 
was chosen after observing that departures for the 
resulting inputs occurred within the first few seconds of 
the simulation. 

Longitudinal 2 

percent 0 
- 1  

stick, 

For the simulation of each input, the trim control 
values are held until the I-sec point. Then, the inputs 
from the string are used. The controls are held for the 
first second of the simulation run to ensure a good trim 
is held before the start of the maneuver. Also, the last 
control input value input at the 5-sec point is held for 
1 sec, yielding the 6-sec total time length shown in 
figure 2(b). 

- 
1-  

- I 

To assign a value representing the “level” of 
departure caused by each possible control input 

111011010011010110101111110000 

.f t t 4 .f 5 Altitude t + ’  01 
2 3 sec 

(a) Binary string representation of the control inputs. 
(Controls held at trim value from 0- to 1-sec point of run 
and held after last input.) 

3 r  

3 -  

stick, 
percent 

- 1  
- 2  

Rudder ip 

lime, sec 

(b) Stick and rudder inputs as a function of time. 

Figure 2. Binary string representation of control input 
and resulting time history. 

sequence, a fitness function needed to be designed. This 
function represents a departed flight condition as some 
numerical combination of the states of the aircraft and is 
similar to the objective function used in a standard 
optimization problem. The definition of the fitness 
function can greatly influence the types of solutions 
found by the genetic algorithm because it influences 
which input strings survive and which ones do not. The 
importance of a well designed fitness function became 
evident from the results of this study. 

The initial fitness function was as follows: 

where 

p = body axis roll rate 

q = body axis pitch rate 

r = body axis yawrate 

p = sideslip 

This fitness function was chosen as an initial guess 
because departures can involve a combination of these 
parameters. Angle of attack was not included because 
departures at all angles of attack were of equal interest. 
The terms were normalized to equally include positive 
and negative values. Also, the fitness was evaluated at 
each time step in the simulation, and the maximum 
value was taken for the whole simulation run. The 
maximum for the whole was taken, so the simulation 
could run without any control inputs for a given time 
segment if doing so would later lead to an increased 
fitness value. 

After the genetic algorithm was run for 100 
generations, it was noticed that all the control input 
combinations in the final population involved full lateral 
stick inputs held for the entire simulation run. The full 
lateral inputs caused the fitness values to be dominated 
by the roll rate term in the fitness function because roll 
rate in the X-31 flight control system at low angles of 
attack can be commanded to 240 deglsec, which is much 
larger in magnitude than the maximum values of the 
other terms in the equation. The sensitivity to roll rate 
indicated a need for a new fitness function that would 
equally weigh all the terms in the equation because 
holding constant lateral control input resulted in a trivial 
maneuver that was not a departure. 
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Weights were added to the original fitness function, 
giving roll, yaw, pitch, and sideslip values similar 
relative magnitudes. This was done to more adequately 
represent a departed condition in the simulation. Despite 
changes in maximum available commanded values of 
these states because of angle of attack in the flight 
controls, the revised fitness function resulted in more 
realistic results. The resulting equation is shown below. 

60 

50 

40 

Fitness 
value 

30 

20 

10 

Figure 3 shows the best and average values for this 
fitness for a simulation run of a population of 
100 strings for 50 generations. This plot shows how 
quickly the genetic search technique finds fitness values 
very close to the best input and drives the average 
population fitness toward this goal by the genetic 
process. 

- 

' 4  ",* , 4 
b ,'*e', ; 

- 
8' I S I  

t 
*, * * 'r' 

- 8 
I 

8 

I I 
I 
I 

8 - * 
8 * * 

8 -* 
I 

8 Population 
c .me 

- *-@ fitness 

------- Average 

* 
I - Best 

8 
8 

8 * ' 
0 10 20 30 40 50 

Results and Discussion 
* The results of the genetic search are described next. 

Only the resulting input strings with the best fitness 
values were e;aluated although a whole population of 
strings exists that could represent other departures at the 

end of the genetic search. Evaluation of all the strings in 
the final population is beyond the scope of this study. 

Inertial Coupling DeDarture 

The initial results from the genetic investigation of the 
X-31 simulation led to a departure mode that is 
consistent with many high-performance fighter aircraft: 
an inertial coupling departure. The large pitch and yaw 
inertia as compared to small roll inertia for modern 
fighters leads to typical inertial coupling problems for 
high roll rate maneuvers. 

To aid in visualizing this effect, the fuselage heavy 
mass distribution of a fighter is represented as a 
dumbbell with the mass concentrated at the two ends. As 
the airplane rolls about the velocity vector, the dumbbell 
tends to pitch up to align itself perpendicular to the 
velocity vector roll axis. The resulting pitching moment 
can be powerful enough to overcome the maximum 
available nosedown pitch control of the flight controls, 
resulting in a departure. The pitching moment induced 
by this effect can be calculated from the following 
equation:'S 

(3) 
2 M i c  = (Zzz - Zxx) pvv sin2a 

Figure 3. Average and best fitness for population as a function of generation. 
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where 

Rudder * 
pedal, 

percent 

Mi, = inertial coupling-induced pitching moment 

Zxx = moment of inertia about the aircraft x axis 

I , ,  = moment of inertia about the aircraft z axis 

pvv = velocity vector roll rate 

a = angle of attack 

- - 

This equation shows how high velocity vector roll 
rates, typical of modern fighter aircraft, can translate 
into high inertial pitching moments. Similar coupling 
can also occur in the yaw axis when roll and pitch rates 
inertially couple to increased yaw rate.16 

Figures 4, 5,  and 6 show the inputs and state time 
histories for an inertial coupling departure from 
multiple rolls at low angle of attack coupled with a pitch 
change. The genetic algorithm search converged on a 
trim condition of 10' angle of attack at 30,000 ft and the 
control inputs shown in figure 4. The inputs cause the 
aircraft to roll at very high rates in both directions at 
negative angles of attack. As the roll rate increases to 
the maximum of around -160 deghec at approximately 
3.5 sec into the run, adverse sidedip increases. This 
increase indicates that the roll and yaw rates are not 
coordinated for the velocity vector roll. 

After the 3-sec point, the pitch control input 
commands maximum noseup angle-of-attack rate. This 
rate leads to an increase in angle of attack that causes an 
inertial coupling departure after the 5-sec point, as 
shown by the sudden increase in sideslip, yaw rate, and 
pitch rate after about 5.5 sec. Figure 7 shows that the 
canard and trailing-edge surfaces are rate limiting 
during this departure after about 5.5 sec. In addition, the 
yaw thrust-vectoring command is position limited, 
indicating the yaw-vectoring command is unable to 
command the yaw rate needed to overcome the 
departure dynamics. 

The pitch-up during the departure is in the same 
direction as commanded angle of attack but reaches a 
higher value than is commanded by the flight controls. 
The maximum commanded angle-of-attack rate is 
25 deg/sec in the X-31 flight control system, but this 
series of inputs yields a maximum angle-of-attack rate 
of over 140 degkec at about 6 sec (fig. 8). 

111011010011010110101111110000 

t 1 .f 4 4 5 Altitude t t '  c( 
2 3 

sec 

(a) Binary string representation of the control inputs. 
(Controls held at trim value from 0- to 1-sec point of run 
and held after last input.) 

I Longitudinal 
..&..L 

- 1  I I 

aim, 

percent 

3 r  

stick, 
percent 

- 1  
- 2  

700 r 
Velocity, 

tilsec 

Angle of 
attack, 

deg 

Body 
axis 

600 650 5 
550 500 5 

Command 

20 
0 - 20 

100 
BO I= / 
60 I- d 

pitch rate, :: = 
deglsec 0 I - 20 I 

20 
Pitch (I 

- - 
attitude, zz 1 

deg -60 - I 
1 2 3 4 5 6  

- O o O  

Time, sec 

Figure 5. Longitudinal states from inertial coupling 
departure. 
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Vane 
Command ----------- 

Sideslip, 20 40E - 
deg 0 

- 20 

Velocity ~~~ ,%, 
vector 

roll rate, 
deg lsec - O0 - 200 

Body 
axis 

deglsec - 100 

200 
Bank - 100 
angle, 0 -  
de9 -100 

- 

- I - 2000 
1 2 3 4 5 6  

Time, sec 

Figure 6. Lateral4irectional states from inertial 
coupling departure. 

Deflection - Symmetric 
Differential - - - - - -  

40 I- 

20 7 

Pitch 15- 
thrust- 10 - 

vectoring 5 - 
command, 0 

deg - 5  

vectoring 
command, - 10 

1 2 3 4 5 6  

Figure 7. Control 
coupling departure. 

Time, sec 

surface deflections from inertial 

For the velocity vector roll to be coordinated, body 
axis yaw rate and roll rate must be related by the 
following expression: 

r = ptana (4) 

Otherwise, sideslip angle will build according to the 
following equation: 

p z psina - rcosa ( 5 )  

Figure 8 shows that the change in sideslip rate, b ,  
builds up to a value above 120 deg/sec at the point 
where the departure occurs around 5 sec. The p sideslip 
indicates that roll and yaw rates are not coordinated, and 
that the flight control system is unable to achieve the 
desired zero-sideslip angle. 

Rate, 
deglsec 

Figure 8 

160- - Angleofattack - - - - - - - Sideslip I 

120 1: 
- 

:: 
80 

40 - 
0 

-40 - i 

- 80 

- 
I 

I 

I I I I 
0 1  2 3 4 5 6  

lime, sec 

Angle-of-attack and sideslip rates From inertial .. 
coupling departure. 

Inertial coupling departures have been well 
d~cumented’~-~’ and have led to restrictions in the 
number of consecutive rolls some modem fighters can 
perform. The X-31 aircraft was limited to one 360” roll 
at low angles of attack during its flight tests. This 
departure mode indicates that the genetic search was 
able to locate a possible departure prone condition 
despite the fact that the X-31 flight control system was 
designed to compensate for inertial and gyroscopic 
coupling.22 

* 

* Bayati, J.E., “Temporary Operating Procedure for Rolling 
Performance,” Rockwell International Temporary Operations 
Procedure Manualfor X-31, TFD-90-122OL-15, Oct. 8,1990. Contact 
the author for queries regarding this manual. 
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Aerodvnamic Asvmmetrv Departure 

Longitudinal 
stick, 

percent -, 

Because inertial coupling departures are well known 
for modem fighters, further analysis was performed to 
see if the genetic search technique could find departure 
prone areas in the envelope caused by aerodynamic 
asymmetries. To this end, a lateral asymmetry similar to 
one found in flight testing of the X-31 aircraft23 was 
added to the aerodynamic models of the simulation, and 
the genetic algorithm was allowed to search for 
departures. 

2 -  - I I 
Flight test data showed that an asymmetry existed on 

the X-31 aircraft with the worst values occurring at 
angles of attack from 60" to 70". Figure 9 shows 
the AC,, or change in yawing moment coefficient for 
zero sideslip, values as a function of angle of attack 
added into the X-31 aerodata tables. The values added 
are slightly different from those found in flight test, but 
the effects on the aircraft dynamics should be similar. 
These changes were added to the aerodata tables for the 
Mach 0.4 and Mach 0.2 breakpoints to test the ability of 
the genetic search technique to locate the specific 
portion of the flight envelope where the directional 
stability change was added. Also, the asymmetries from 
the nose vortices on the X-31 aircraft are more 
pronounced at low speeds. The same fitness function 
from the inertial coupling analysis was used for 
consistency. 

111000010011111110101100111110 

4 4 4 4 4 4  
2 3 4 5 Altitude a 

8 e C  

(a) String representation of the control inputs. (Controls 
held at trim value from 0- to 1-sec point of run and held 
after last input.) 

3 r  

- 2 '  I I I I I I 

stick, 
percent - 1  

- 2  

31- 

pedal, 
percent -, 

- 2 1  I I I I I I 
0 1  2 3 4 5 6  

Time, sec 

(b) Stick and rudder inputs. 

Figure 10. Aerodynamic asymmetry departure inputs. 

condition of 60" angle of attack at an altitude of 
40,OOOft. Figures 11 and 12 show the resulting time 
history data from the departure. The departure occurs at 
a flight condition that corresponds to the Mach number 
and angle of attack where the asymmetry was added, 
which demonstrates the ability of the genetic search 
technique to locate specific areas of the envelope. 

Figure 10 shows the resulting inputs from the genetic 
search for this test case. The search converged on a trim 

9-- I 

70 c- The inputs indicate that the simulation trims at a high 
angle of attack initially. At this high angle-of-attack 
condition, the asymmetry creates a yawing moment that 
is too great for the controls to overcome, indicated by 
the initial yaw rate build up after the start of the 
simulation. 

0 Flight test points 

ACno value added to database 

Figure 9. Change in yawing moment coefficient for zero 
sideslip values added to aerodynamic data. 

Figure 13 shows that the yaw vectoring immediately 
saturates to try to overcome the directional instability. 
The flight control system tries to command the angle of 
attack to match the longitudinal stick input, taking the 
available control deflection from differential trailing 
edge and commanding full nosedown symmetric 
trailing-edge deflection. This pitch axis priority of the 
flight controls allows the yaw rate to increase to almost 
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Figure 11. Longitudinal states from aerodynamic 
asymmetry departure. 
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Figure 12. Lateraldirectional states from aerodynamic 
asymmetry departure. 

70 deg/sec after 2 sec. The asymmetry causes the 
proverse sideslip to increase to -10" which increases the 
roll rate to over 100 deghec after 3 sec. Again, inertial 
coupling between the roll and yaw rates results in an 
angle of attack increase to over 80" after 5 sec. The 

Canard, -40 

-80 

Pitch 2o r 
vectoring 
command, - ,o 

thrust- 10 

I I I 
1 2 3 4 5 6  

Time, sec 

Figure 13. Control surface deflections from 
aerodynamic asymmetry departure. 

sideslip time history also indicates that an unstable 
sideslip oscillation is occumng, with an increasing 
magnitude of over 30". Values above 10" are considered 
over safe limits according to flight test procedures. 

Figure 14 shows that the rate of angle of attack is 
again over the commanded maximum because of the 
departure. The change in sideslip also increases to over 
-70 degfsec during the departure. 

This simulated departure is similar to an in-flight 
departure of the X-3 1 aircraft during a 2-g, split-S to 60" 

loo - - Angle of attack 
80 - - - - Sideslip 

60 - 
40 - 

Rate, 20 - 

-20 

degsec 0 =------ 
- 

- 4 O h  

I 
I 

\ I  
\ I I I I 1 

1 2 3  4 5 6  
lime, sec 

Figure 14. Angle-of-attack and sideslip rates from 
aerodynamic asymmetry departure. 
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angle of attack on flight 2-73. During this in-flight 
departure, the yaw-vectoring command was also 
position limited. In addition, the angle of attack 
increased to over 80”. Data from this in-flight departure 
showed that it was triggered by an unmodeled yawing 
moment similar to that added into the aerotables for this 
study. 

If the same inputs are run through the simulation 
without the asymmetry modeled in the aerodata, the 
simulation did not depart. The maximum sideslip during 
the maneuver was 2O, and the maximum angle of attack 
was 60°, indicating that adding the asymmetry caused 
the inputs to lead to a departure. As a result, the genetic 
search technique demonstrated that it is possible to 
depart the aircraft simulation during highly dynamic 
maneuvers when these asymmetries are modeled. 

Concluding Remarks 

The departure modes found by the genetic search 
technique indicate that it can find input combinations 
that cause departures in different areas of the envelope. 
The following conclusions can be drawn from the 
results of this study: 

1. 

2. 

3. 

Genetic search techniques offer an effective way 
to search for departure cases because the algorithm 
will run until it finds a departure. The analysis runs 
without the user having to guess at possible initial 
flight conditions that may be prone to departure. 

Genetic search techniques can be very sensitive to 
the choice of the fitness function. 

Departure conditions that may be overlooked by 
other departure prediction methods may be found 
using the quasi-random search techniques of 
genetic algorithms. Also, the method introduced 
here includes control system effects in the search. 

The following recommendations are made as a result 
of this study: 

1. Apply genetic search techniques to other high 
fidelity simulations to see if similar results are 
found. 

2. Extend the technique developed in this study to 
see if it is applicable for system testing. 

Study variations of total simulation time, input 
frequency, and control input magnitude to 
investigate changes in the results. 

Study variations on the genetic algorithm 
parameters, such as crossover probability, 
mutation probability, and population size, to 
determine how the resulting departures differ. 

Study other departures in the final population to 
determine if certain types of control input 
sequences are common between different flight 
conditions, indicating what types of inputs can 
lead to departures at several points in the envelope. 

Study different fitness functions to find what other 
types of departures can be found. For example, the 
removal of roll rate from the fitness used may 
exclude inertial coupling departures from the final 
population. 
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